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Energy-efficient information transmission may be relevant to biological
sensory signal processing as well as to low-power electronic devices. We
explore its consequences in two different regimes. In an “immediate”
regime, we argue that the information rate should be maximized subject
to a power constraint, and in an “exploratory” regime, the transmission
rate per power cost should be maximized. In the absence of noise, discrete
inputs are optimally encoded into Boltzmann distributed output symbols.
In the exploratory regime, the partition function of this distribution is nu-
merically equal to 1. The structure of the optimal code is strongly affected
by noisein the transmission channel. The Arimoto-Blahut algorithm, gen-
eralized for cost constraints, can be used to derive and interpret the distri-
bution of symbols for optimal energy-efficient coding in the presence of
noise. We outline the possibilities and problems in extending our results
to information coding and transmission in neurobiological systems.

1 Introduction

There is increasing evidence that far from being noisy and unreliable, spik-
ing neurons can encode information about the outside world precisely in
individual spike timings (see de Ruyter van Steveninck, Lewen, Strong,
Koberle, & Bialek, 1997, Berry, Warland, & Meister, 1997; Buracas, Zador,
de Weese, & Albright, 1998). Estimates of the information transmitted by
sensory neurons have often found them to be highly informative, sending
2 to 5 bits per spike, and quite reliable, using roughly half of the total en-
tropy available in their spike trains (Buracas et al., 1998 [monkey visual
cortex]; Warland, 1991 [cricket cercus]; Rieke, Warland, & Bialek, 1993, and
Rieke, Bodnar, & Bialek, 1995 [frog auditory system and frog sacculus];
Berry & Meister, 1998 [salamander retina]; Strong, Koberle, de Ruyter van
Steveninck, & Bialek, 1997 [blowfly H1 interneuron]; Warland, Reinagel,
& Meister, 1997 [salamander retina]; Reinagel & Reid, 1998 [cat LGN]; see
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Figure 1: Schematic view of an information system.

Rieke, Warland, & de Ruyter van Steveninck, 1997, for a discussion and re-
view). So it is possible that there are behavioral regimes where information
theory will be a powerful tool for predicting the structure of neural codes,
provided the costs and constraints of biological computation are properly
incorporated. Therefore, as a step toward a biologically relevant information
theory, we examine the effect of energetic costs on the coding and transmis-
sion of information by discrete symbols, following important prior work by
Levy and Baxter (1996) and Sarpeshkar (1998). We have in mind a model
of a sensory system where signals from the natural world are detected and
encoded, and pass through a noisy channel before arriving at a decision-
making receiver. Our results are equally relevant to low-power electronic
devices, such as mobile telephones, that are constrained by finite battery life.
In general terms, the role of a sensory system in the process of information
use by an organism is summarized in Figure 1. Information about the en-
vironment is detected by sensors and encoded for transmission through an
information channel to a control system. For example, the retina detects pat-
terns of light, which are encoded by ganglion cells for transmission through
the optic nerve to the brain. We might expect evolution (or engineering)
to produce systems that make an “optimal” choice for both the amount of
information to transmit and, given the amount, the kind of information to
transmit. The amount of information is quantified in classical information
theory by the mutual information I(S; Z), and by the rate R = I(S; Z)/N
during a period in which N symbols are transmitted (Cover & Thomas,
1991). As we will describe, information theory can be used to determine the
minimum power necessary to transmit at a given rate R or the minimum en-
ergy needed to transmit a given amount I of information. The rate at which
the organism should operate is determined by a trade-off between the value
and cost of the transmitted information. We outline two different behavioral
regimes in which these trade-offs leads to different coding strategies.

1.1 Immediate Regime. In some activities an organism is engaged in
a time-critical task involving rapidly changing environmental states, and
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its performance depends strongly on its rate of sensory information acqui-
sition R. For example, a cheetah’s effectiveness in catching a gazelle, and
hence in procuring metabolic gains from food, might be expected to improve
with increasing R. However, acquiring sensory information also incurs a
metabolic cost at some rate E, and unless the resulting rate of metabolic
gain for the organism V is great enough, the expenditure may not be worth-
while. Although numerous factors affect the value of information, we will
focus on how it varies with the rate R and consider a value function V(R)
with all other variables held constant.

In general, we expect that the value V(R) of sensory information will
increase monotonically, but not linearly, with R. At a low enough rate of
acquisition, the sensory modality will be of no use to the organism. For
instance, if the cheetah sees half as well, it will not capture half as many
gazelles—it will starve. Conversely, at a high enough information rate, the
value should saturate, as there is only so much meat in a gazelle. Balanc-
ing the marginal increase in value to the organism, dV(R)/3dR, against the
marginal increase in energy expense, dE(R)/dR, yields some optimal rate
R* for such an immediate regime. Alternatively, there may be some struc-
tural constraints, such as signal-to-noise ratio of the sensory modality or
processing speed of the biological circuitry, that limit the attainable rate R°.

We cannot compute R* without knowing the value function V(R), and we
cannot compute R® without knowing the structural constraints. However,
the smaller of these two values will set the organism’s rate of sensory infor-
mation acquisition, and whatever it is, an optimal code will minimize the
energy cost for this rate. To study the structure of such codes, we can simply
ask how to minimize the power required to transmit at a given information
rate. As we shall see, E(R) is an increasing convex function, so this is equiv-
alent to determining that maximum rate R(E) of information transmission
given a constraint of average energy E per symbol (see Figure 2).

1.2 Exploratory Regime. In many other situations, the relevant envi-
ronmental state is changing slowly, and an organism is not faced with any
urgent tasks. Here, it is free to choose the rate at which it surveys its sur-
roundings, as well as the time it spends before making a behavioral decision
that changes its environment. The quality of exploration will depend on the
total amount of sensory information acquired. Better exploration will allow
the organism to achieve more appropriate behavior, but continued explo-
ration will involve a cost in metabolic energy as well as in opportunities for
other behavior. Therefore, there will be an optimal amount of information,
I*, that the organism should acquire, where the marginal value of explo-
ration matches its marginal cost.

We cannot compute I* without knowing the value of exploration achiev-
able using an amount I of information. However, whatever the value of I*,
and independent of the details of the activity, an “optimal” sensory system
will transmit that information at the rate that minimizes the cumulative
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Figure 2: Schematic of energy optimization. The information rate (thick line) is a
convex function of the energy rate until E ... The exploratory regime optimum
(R*, E*) is given by the intersection of the tangent from the origin (thin line) with
R(E).

energy cost E;(I*). The convexity of E(R) implies that this is achieved by a
sensory system that transmits at a fixed rate, as any variations in the rate
will result in a higher cumulative energy cost. This optimal rate of sen-
sory information acquisition will minimize E.(I*) = E(R) % or, equivalently,
maximize R(E)/E.

1.3 Low-Power Devices. Both the immediate and the exploratory re-
gimes apply to low-power electronic devices, such as mobile telephones
and laptop computers. The finite battery lifetime of these devices puts a
premium on energy efficiency. The immediate regime is equivalent to an
“on-line” mode, where the information rate of the device is determined
by the application, but the total amount of information is variable. The
exploratory regime is equivalent to an “off-line” or “batch” mode, where
the total amount of information to transmit is set, but the rate is variable.

1.4 Summary. A system operating at any given information rate R
should transmit using the minimimum energy E(R) required for that rate,
all other constraints being held equal. In immediate activities, the optimal
rate is determined by the trade-off between gain realizable at rate R and the
cost E(R). However, in an exploratory regime, the optimal rate maximizes
R(E)/E, independent of the details of the activity. The next sections describe
the general structure of energy efficient codes.
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2 Metabolically Constrained Capacity and Coding

In this section we consider the consequences of metabolic efficiency in infor-
mation transmission. We will not address the problem of determining what
information to transmit, but abstract the mapping S — X in Figure 1 as
performing this task. From this point of view, we can treat X as a sequence
of symbols to be encoded into a sequence Y of channel inputs, which get
transmitted to produce an output sequence Z. Denote the elements of these
sequences at a specific time as x, y, and z. Channel transmission is both noisy
and energetically costly.

Assume a discrete memoryless channel, modeled by cross-over prob-
abilities Qx; = Pr{z = zly = y;}, giving the probability that a channel
input symbol y; results in a channel output z. The organism as a whole
incurs a variety of energetic expenditures at all times, but we will focus
on the costs of operating the sensory system, these being relevant to the
optimization considered here. The energetic cost of transmitting informa-
tion can be referred to the input Y or the output Z, or may even be a
function of both X and Y. However, we choose to associate energy costs
{E1, - - -, E;} with input symbols {y1, - - -, y»}. This entails no loss of gener-
ality, since for arbitrary costs Ejx depending on both input y; and output
zx, we may simply take E; as the expected cost E; =  ; Qk|jEj for use of
symbol y;.

Our goal is to find, for any given energy E, the maximum achievable
mutual information I(X; Z) between the signal X and the channel out-
put Z, with expected energy cost E < E. However, it can be shown that
I(X; Z) < I(Y; Z), with equality when X can be completely determined from
Y (Cover & Thomas, 1991). Intuitively, the encoding from X to Y should ex-
ploit the channel characteristics, but without loss of information about X.
Assuming the mapping from X to Y is indeed lossless, maximizing I(X; Z)
reduces to maximizing I(Y; Z). Correlations within the sequence Y will al-
ways decrease the total amount of transmitted information, since this is
bounded above by the entropy of Y. So to maximize I(Y; Z) we can assume
that the symbols of Y are independently drawn from a distribution g(y) over
the channel inputs. But both I(Y; Z) and E depend on (), so formally the
problem is to determine the function

C(E)=(1/N) max I(Y;Z:;E=) qu)E, 1)
q(y): E<E 7

where C(E) is called the channel capacity-cost function (Blahut, 1987). It is

evident from equation 2.1 and the statistical independence of symbols in Y

that C(E) = R(E) where R(E) is the constrained transmission rate discussed

earlier. The channel coding theorems of classical information theory assert

that reliable transmission of information is possible at any rate less than
R and at no rate greater than R. Our focus is not on reliable transmission
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per se but simply on the maximum per symbol rate R(E) at which mutual
information I(Y; Z) can be established given the constraint E<E.

We now address—first in the noiseless case and then for a noisy channel—
the related problems of (1) characterizing C(E), (2) determining the distribu-
tion ge(y) that achieves C(E), and (3) finding the maximum of C(E)/E. The
first two problems are of interest because an energy-optimal device or organ-
ism should achieve C(E) for whatever energy E it is operating at, requiring a
very particular distribution over y. The third problem is interesting because
it allows us to determine both the rate C* and energy E* at which an energy-
optimal organism would operate in the exploratory regime, regardless of
the details of its activity.

2.1 Efficient Noiseless Transmission. In the absence of noise, the chan-
nel input and output are equal (Y = Z), and the mutual information I(Y; Z)
equals the channel input entropy H(Y). So finding the capacity at fixed en-
ergy reduces to maximizing the entropy of Y at fixed energy. Correlations
within the sequence Y will always decrease the entropy, so we can assume
that the symbols in Y are drawn independently from some distribution 4.
The purpose of the encoding process X — Y is to implement a deterministic
map between the signal X and the channel input Y, in such a way that the
symbols of Y are statistically independent and have a distribution q. We
will not dicuss how this encoding is performed in practice and will focus
instead on the structure of the optimal distribution g.! Then the per sym-
bol information rate (or entropy) and energy involved in the transmission

are H = — >, gjlng; and E = Y7/, giE;, where g; = q(y). In the immedi-
ate regime, we maximize H at fixed E, while in the exploratory regime we

maximize H/E.

2.1.1 Immediate Regime. Entropy maximization at fixed average cost is
a classic problem, solvable using the method of Lagrange multipliers by
defining the function

n n n
G=-) glngi+B|D> gE—E|+r[D> g -1 2.2)
j=1 j=1 j=1

and setting its derivatives with respect to 8, A, and all the g; equal to zero.

Setting % = 0 ensures that the g remains a probability distribution. The
conditions 8G/dq; = 3G/3p = dG/dr = 0 can be solved simultaneously to

! There are standard algorithms in coding theory that perform such mappings between
X and Y (Cover & Thomas, 1991). Most such algorithms are not biologically plausible, and
it would be very interesting to determine whether suitable encoding algorithms can be
implemented by biological hardware.
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where the normalization factor Z is known as the partition function and g
is implicitly determined by demanding that the average energy be E. We are
simply recovering the commonplace fact of statistical physics that entropy
is maximized at fixed average energy by a Boltzmann distribution with an
“inverse temperature” f defined by equation 2.3. Standard results about
Boltzmann distributions then tell us that the maximum information rate at
fixed energy H(E) is a convex function of E, increasing from 0 at Enin =
min;(E;) to a maximum Hpax = Inn at Epax = 2}1:1 Ej/n. (In the language
of statistical physics, the “heat capacity” is positive.) Larger energies (E >
Emax) lower the entropy (see Figure 2).

2.1.2 Exploratory Regime. In the exploratory regime, we maximize the
information transmitted per energy cost, so we should extremize

é:

™| T

n _ ZV’: ln . n
1Y g1 _ o=, Y g-1 (2.4)
o1 Zj:l q;E; =1

with respect to A and all the g;. If G is maximized by some distribution §,
there is a corresponding information rate H and power consumed E. We

have already shown that for fixed E, the information rate is maximized by
the Boltzmann distribution (see equation 2.3). So § must be Boltzmann for

some inverse temperature . This reduces the multivariable optimization
problem of maximizing G to a single equation: choose g tobe Boltzmann as in
equation 2.3 and demand that dG/d8 = 0. It is easy to solve this condition

in terms of the partition function (see equation 2.3) and H = BE 4+ In Z.

Maximizing with respect to 8 gives the condition In Z 3231222 = 0. Solutions
that maximize G satisfy
nZ=0 = Z=1 (2.5)

Thus, information transmission is optimized in the exploratory regime by a
Boltzmann distribution with unit partition function. This selects a particular
energy E* and associated entropy H*. Despite the ubiquity of the partition
function in statistical physics, this is the only instance, insofar as we are
aware, of a clear physical meaning assigned to a particular numerical value
of Z.
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2.2 Efficient Noisy Transmission. Now consider the noisy channel.
Once again the capacity will be maximized when the symbols of the se-
quence Y are chosen independently from some q(y) because correlations re-
duce transmitted information. With this assumption, and the channel cross-
over probabilities defined in section 2, the channel capacity (see equation 2.1)
at a fixed transmission energy becomes

C(E) = max | — Z gj In g + quQkU log P]'|k s (2.6)
q(y);E<E 7 ik

where Pj = Pr{(Y = yj|Z = z} is given by

Py=y.z=20) _ 4Quj

P = = .
Ik p(z = z) 2 9iQxj

2.7)

The maximization is complicated by the dependency of Pjj on g;. An insight
due to Arimoto (1972) and Blahut (1972), which still applies despite the
energy constraint, is that equation 2.6 can also be written as the double
maximization,

C(E)= max |—) glng-HY|Z) |, 2.8)
q().P;E<E i

where we define H(Y|Z) = Z]- qu:Ij =— ij qiQxjjlog I3j|k. The advantage of
this form is that the capacity can be computed numerically by an iterative
algorithm that alternately maximizes with respect to g; and lsk‘ j while hold-
ing the other variable fixed. Each of these maximizations can be carried out
using Lagrange multipliers, as in the previous derivations. The resulting

algorithm can be summarized:

1. Choose arbitrary nonzero qj(o).
2. Fort=0,1,2,...repeat:
()
A(t) ;" Quj
a) P/ <
@ Fii >0 Qi
—gE;-A"

b) ¢" ;]) with B chosenso }; q;t+l)Ej =E

] —pE—A"
e i

(o) If q]r(t’q) close to q]r(t) stop

The correctness of this generalization of the classic Arimoto-Blahut algo-
rithm is discussed in Blahut (1972). In maximizing with respect to g in

step 2b, H(Y|Z) and the energy costs play identical roles. Indeed, H(Y|Z) is
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essentially the average cost due to information loss in noise, leading to the
Boltzmann distribution in step 2b. This algorithm yields the capacity at fixed
energy C(E) and the associated distribution g (). In the exploratory regime,
numerical optimization of C(E)/E gives an optimal energy E*, associated
capacity C*, and distribution gg- ().

2.3 Summary. Given the channel noise and the symbol energies, the ca-
pacity function C(E) can be computed. In the noiseless case, it is achieved
by a Boltzmann distribution. For a noisy channel, C(E) is computed numer-
ically, and in all cases the distributions produced by the algorithm above
achieve metabolically optimal transmission. In the exploratory regime, the
rate should be chosen to maximize C(E)/E, which is achieved in the noise-
less case when Z equals 1. We have not discussed the implementation of
the encoding from X into Y, which may be realized by either arithmetic or
block coding methods (Cover & Thomas, 1991). How well this mapping can
be approximated by biological organisms is a question for investigation.

3 Characteristics of the Efficient Code

In this section, we consider some of the properties of energy-efficient codes.
First, we show that the optimal code is invariant under certain changes in
the symbol energies. Then we illustrate some of the effects of adding noise.

3.1 EnergyInvariances. The metabolically efficient distribution on code
symbols is invariant under some transformations of the energy model in
both the immediate and exploratory regimes. Regardless of whether the
energy costs are assigned to the channel inputs y; or the channel outputs z;,
the optimal immediate symbol distributions are independent of a constant
shift in the energies (Ex — Ex + A). In the exploratory regime, the optimal
distribution is independent of rescalings of the energies (Ex — AE). This is
shown as follows.

3.1.1 Immediate Regime. In the immediate regime, we fix the average
transmission energy (E) and carry out the Arimoto-Blahut optimization al-
gorithm in section 2.2. First, suppose that symbol energies E; have been
assigned to the channel inputs. We choose an arbitrary starting distribu-

tion qj(o) for the channel inputs and iteratively perform steps 2a and 2b of

the algorithm to find improved distributions q;tﬂ). Step 2a leaves q;t) un-

changed. Step 2b, which computes q]-(t’q)
constant shift of the input energies E; — E; + A, accompanied by a shift of
the average transmission energy E — E + A. So the energy-optimal imme-
diate distribution is invariant under a simultaneous constant shift of all the

symbol energies and the average energy. Next, suppose that symbol costs

, is manifestly invariant under a
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Uy have been assigned to the channel outputs z;. The average energy ex-
pended by a channel input y; is E; = } _; Uy Qy);- Since this relation is linear,
a constant shift by A of the output energies Uy translates to a constant shift
by A of the input energies Ej, leaving the optimal immediate distribution
invariant.

3.1.2 Exploratory Regime. Suppose the channel inputs have energy E;
and that C(E) is the channel capacity at fixed transmission energy E. We
compute the exploratory regime optimum by setting

d(C(E)/E) 19C(E) C(E) _
9E  E O9E  E2

0. G.1)

It follows from the Arimoto-Blahut algorithm that the optimal input distri-
bution at fixed transmission energy is invariant under a combined rescaling
of both the input symbol energies and the average transmission energy
(Ex = A Ex and E — A E). To see this, observe that step 2a of the algorithm
does not change the distribution, while the condition in step 2b is solved
for the new energies by rescaling 8 — /. Since the capacity is a function
of only the distribution of code symbols and not directly of the symbol en-
ergies, we conclude that the capacity for the system with rescaled energies,
C,, satisfies the relation

C..(AE) = C(E). (3.2)

To find the optimal exploratory distribution with the rescaled energies, we
must solve 3(C; (E) /E)/ 9E = 0. Changing variables to E = E /X and using
equation 3.2, we find that

ACi(E)/E) _ 1 d(CL(AE)/E) _ 1 J(C(E)/E) _
dE a2 dE T2 9E

0. (3.3)

Since this equation is proportional to equation 3.1, the optimal exploratory
distribution is invariant under a rescaling of the input energies. If we as-
sign costs Uy to the output symbols, linearity of the relation E; = » 3 Uk Qgj;
between input and output costs implies that rescaling the output energies
rescales the effective input energies and again leaves the exploratory opti-
mum invariant.

3.2 The Effects of Noise. In general, an energy-efficient code should
suppress the use of expensive symbols. However, noise can have a dramatic
effect, since conveying information requires the use of reliable symbols. In
fact, the noisiness of a cheaper symbol can easily lead to its suppression
relative to a more expensive, but reliable, symbol. This sort of effect is par-
ticularly important in applications to biological systems and is illustrated
in the toy examples that follow.
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Consider a noisy channel in which six symbols {y1, ..., ys} are trans-
mitted as symbols {z1, ..., z¢} with channel cross-over (noise) probabilities
Qxj = Pr{z = z|y = y;}, as in section 2. Furthermore, let the output symbol
z, have a transmission energy of U, = n. Then the average energy of the
channel input symbol is E; = Y"5_; U, Quji. In the absence of any noise at
all, Qx; = & and so E; = U, and the channel input and channel output
distributions for the exploratory regime are both given by:

e=hn 6
R Z=) eM=1 (3.4)

n=1

Pr(y,) =Pr(z,) =

In other words, the channel input and output distributions are both expo-
nential, and the weight in the exponential is determined by the condition
Z = 1. In this case we find 8 = 0.685.

Next suppose that we have nearest-neighbor noise:

1-2p 2p 0 0 0 0
[4 1-2p P 0 0 0
. 0 p 1-2p p 0 0
Q= 0 0 p 1-2p p 0 (35)
0 0 0 [4 1-2p p
0 0 0 0 2p 1-2p

Here Qy; is the entry in the jth row and kth columns of the matrix Q. Fig-
ure 3 shows the optimal exploratory regime distribution on channel output
symbols, for several values of noise parameter p. Notice the marked devia-
tion of the optimal output distribution from a pure exponential as the noise
increases. For p = 0.25, the least energetic symbol y1, with E1 = 1, is sup-
pressed so strongly that it is less likely than symbol i, with E; = 2. Among
the various intricate effects we have observed in the optimal distribution as
a function of noise is a phase-transition-like behavior where the probability
of a symbol evolves smoothly until the noise reaches some critical value and
then drops suddenly to essentially zero. Figure 4 shows such effects for the
input distribution to the channel (see equation 3.5).

In statistical physics, phase transitions occur due to trade-offs between
energy and entropy. Physical systems at finite temperature try to minimize
their energy but maximize their entropy, leading to sharp transitions, such
as the melting of ice, at a critical temperature. In our case, information lost
to noise decreases the mutual information between the channel input and
output, and this reduction in mutual information competes against energy
minimization in the optimization. The sharp transitions as a function of
noise (see Figure 4) are a result of this trade-off. Since biological signal pro-
cessing systems are noisy, it is important for applications of our formalism
that the noise be carefully measured and included in the model.
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Figure 3: The effects of noise. Probability distribution of channel output sym-
bols as a function of increasing nearest-neighbor noise. The values of p and the
associated optimal g displayed here are {p = 0, g = 0.685}, {p = 0.1, g = 0.420},
{p=02,8=0.340}, and {p = 0.25, 8 = 0.317}.
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Figure 4: Sharp transitions in symbol probabilities due to noise. Shown here
is the probability of channel input symbols as a function of noise. (Top, left to
right) y1, 12, y3. (Bottom, left to right) v4, s, ys. Notice the different vertical scales
in each panel.
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4 Application to Neural Systems

Our primary motivation in analyzing energy-efficient information trans-
mission is to provide a formalism that can make quantitative predictions
about the detailed structure of neural codes. To this end, we must identify
circumstances in which the neural code can be thought of as a sequence of
discrete symbols with distinct energies. Given such a set of symbols as well
as a characterization of their transmission noise and energy cost, we can
predict the unique symbol distribution that maximizes information trans-
mitted per unit metabolic energy and compare this against the measured
symbol distribution.

The vertebrate retina provides a particularly good example. Its input is a
visual image projected by the optics of the eye; its output consists of easily
measured action potentials. The optic nerve, which connects the eye with
the brain, represents the visual world with many fewer neurons than at any
other pointin the visual pathway, suggesting that principles of efficient cod-
ing may be relevant. In addition, patterns of light with particular behavioral
importance—for instance, the image of a tiger—are distributed over many
photoreceptor cells, the primary light sensors of the retina. This makes it dif-
ficult for any single retinal neuron to evaluate the behavioral significance of
an overall image. Therefore, we expect that the value of the signal transmit-
ted by a given optic nerve fiber is closely related to its information content
in bits.

Previous studies (Berry et al., 1997; Berry, Warland, & Meister, 2000) have
shown that ganglion cells, the output neurons of the retina whose axons
form the optic nerve, often transmit visual information to the brain us-
ing a discrete set of coding symbols. In these experiments, the retina was
stimulated with a wide variety of temporal and spatial patterns of light
drawn from a white noise ensemble (Berry et al., 1997). Under these stim-
ulus conditions, ganglion cells responded with discrete bursts of several
spikes separated by long intervals of silence. The reproducibility of these
firing events was very high: the timing of the first spike jittered by ~ 3 ms
from one stimulus trial to the next and the total number of spikes varied by
~ 0.5 spike. This precision implies that each event is highly informative and
that events with different numbers of spikes can reliably represent different
stimulus patterns. In addition, correlations between successive firing events
were very weak, implying that each firing event is an independent coding
symbol that carries a discrete visual message.

This suggests that the size of each firing event (i.e., the number of spikes
it contains) may be treated as a discrete symbol N in the retinal code. A short
duration of silence may also be discretized to a symbol 0. The experimen-
tally measured sequence of retinal ganglion cell events, discretized in this
manner, is represented in our model as the output sequence Z. In addition,
S is the visual stimulus to the retina, X is the output of the photoreceptors,
and Y is an internal retinal variable representing the ideal retinal output
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prior to the addition of noise. Repeated presentations of the same stimulus
produce a distribution of ganglion cell events with a sharp peak at a cer-
tain symbol and a width that we attribute to noise. Interpreting the peak
of the distribution as the intended noiseless output Y, the distribution of
actual ganglion cell outputs yields the channel noise matrix required by our
model. Given a measurement or an estimate for the energy consumption by
events of different sizes (see below), our framework then predicts a specific
optimal distribution of event sizes. Comparison of this distribution against
the experimentally measured event distribution is a quantitative check of
the relevance of metabolically efficient coding to the retina.

More generally, our methods may be applied in any system where a suit-
able discretization of the neural code is available, along with a description
of noise and costs. The all-or-nothing character of action potentials makes
such discretization possible. By choosing an appropriate time bin, a spiking
neuron’s activity becomes a sequence of integer spike counts. The choice
of time bin and independent “code words” will depend on the neuron be-
ing studied. The noise can be measured experimentally by repetition of an
identical stimulus and observation of the resulting distribution of output
symbols.

The symbol energy is more difficult to access experimentally. However,
Siesjo (1978) and Laughlin, de Ruyter van Steveninck, and Anderson (1998)
have argued that the dominant energy cost for a neuron arises in the pumps
that actively transport ions across the cell membrane. If this is true, then the
symbol energy can be found by simulating the known ionic currents in a
neuron to find the total charge transported during different time periods, as
this charge flow must be reversed by active transport in order to maintain
equilibrium. Because ionic currents are large during an action potential, the
symbol energy is likely to be given by a baseline metabolic cost plus an addi-
tional increment per spike, Ey = 1+ b N, where b is the ratio of spiking cost
to baseline cost during the time bin. The baseline cost has components due
to leak currents, synaptic currents, and other cellular metabolism. Estimates
of b vary and depend on the neuron in question. While a variety of mea-
surements indicate that electrical activity accounts for roughly half of the
brain’s total metabolism (Siesjo, 1978), the parameter b may still be small. In
any case, since cellular metabolism is difficult to estimate and because it is
unclear in the present context whether presynaptic and postsynaptic costs
should be bundled into the expense of producing a spike, b can be treated
as a free parameter for each neuron and varied to find the energy-efficient
code that best agrees with the neuron’s distribution of coding symbols.

Direct determination of metabolic activity is possible for an entire tissue
by measurements of oxygen consumption or heat production. Furthermore,
the metabolic activity of a single neuron could be obtained by measuring the
uptake of a radioactively labeled metabolic precursor, such as glucose, dur-
ing stimulation of the neuron at different firing rates. Such measurements
could fix or place bounds on the possible values of b.
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4.1 Summary. We have outlined how the formalism developed in this
article can be applied to real neurons, with particular emphasis on retinal
ganglion cells. Discrete output symbols may be defined by counting the
number of spikes produced within a fixed time window. The noise in each
symbol can be experimentally measured, and the energy cost can be esti-
mated. Finally, the optimal distribution of spike counts in a symbol can be
computed using our methods and compared to the actual distribution used
by the neuron. Such a test would determine whether the metabolic cost of
information transmission is an important constraint in the structure of a
neural code.

5 Discussion

We have described energy-efficient codes in two different regimes: an im-
mediate regime, where a system’s rate of information transmission is set by
external constraints, and an exploratory regime, where the total amount of
information transmission is set by external constraints. The optimal codes
in these cases are closely related, both following a Boltzmann distribution
in the symbol energies, pj ~ e~#Ei, when there is no noise. In the immediate
regime, the inverse temperature, g, is set to yield the imposed information
rate, while in the exploratory regime, g is set to make the partition func-
tion, Z, equal to one. With the addition of noise, the optimal code must
be obtained numerically, but can always be found using a straightforward
iterative scheme.

In delineating the immediate and exploratory regimes, we do not expect
that all of an organism’s behavior can be neatly assigned to one or the other
category. Instead, we propose here that they apply to some behaviors. We
have argued for animmediate regime in which the transmission rate is set by
the need to respond rapidly to environmental pressures. However, there will
certainly also be situations where the rate is determined instead by complex
interactions involving the internal needs and constraints of the organism.

There are also subtleties in identifying regimes of behavior that are ex-
ploratory. We have described an idealized situtation where an organism
acquires a certain amount of sensory information before executing a single
behavior. More realistically, the organism simultaneously acquires sensory
information relevant to many possible behaviors, and the interplay between
sensation and behavior is ongoing. This can be analyzed within our frame-
work by determining the different amounts of optimal information I* asso-
ciated with each behavior and then requiring that the total amount of data
be gathered simultaneously. The exploratory regime optimization continues
to determine the total rate at which the information should be gathered. The
essential point is that in this regime, the organism’s behavior is open-ended:
it has sufficient time to choose a rate of sensory information acquisition that
achieves energy efficiency, while still being able to acquire enough informa-
tion to make a “good” behavioral decision among the available choices.
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We have described how our formalism can be applied to a biological
system, like the retina. Our methods should also be useful in the analysis
of low-power engineered systems, such as mobile telephones and laptop
computers, which use discrete, independent coding symbols. In this case,
the engineer controls the particular choice of coding symbols, as well as
the design of the encoding algorithm and the transmission channel. The
energy and noise characteristics of the channel can therefore be precisely
determined as inputs to our theoretical analysis. Perhaps such an exercise
will help in designing low-power devices that can perform for longer times
before running down their batteries.
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